
3 1 2 Discute systems two levelsystem
In many systems energy variations do not stem solely

from motion in space but instead due to changes in discute

observables An important example is that of localized electras

on a lattice in the presence of a magnetic field Taking into

account the g ratio ofthe electras ge 2 their energy is

E uh ri 5 E Tir where
m is the magnetic

moment of the electrons 5 the exchange energy and T 1 is

minus their namalized spins

Two level systems A simpler version of this problem

aments to neglecting interactions and consider Natans in a

lattice thatcan each be in twopossible energy levels one
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We note that thefollowing configurations can be distinguished
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thanks to the position of the ators so that the number

of configurations with energy E mE is
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Inventing this relation leads to eat
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The expantial vanishing of C as T so is standard of gappedsystem

3 1 4 Large systems and thermodynamics

3 1 4 1 Macrostate

As in chapter 2 themicroscopic configurations of a system referredto as

microstates 4m often contain too muchinformation Onemay
thus

introduce coarsegrained descriptions ofthe system by grouping
microstates together into macrostates 4m

Example Nspins 4m 51 Sa
Amacrostate You can be defined using the magnetization perspin
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Then are 2Nmicrostates and N 1 macrostates time NmE N N

Strong dimensional reduction hence the micro vs macro denomination

Probability P Em Eap Em is theprobabilityof the macrostate

Because there are many 4min one 4m PC4m is often simpler thanPG

This is a case where more is simpler let us consider an

important example equilibration

3 1 4 2 Subsystems equilibration
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Lt's show that PIE is peaked at a givenvalue E

In large systers E varies continually
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S the entropy per particle

When N no the integral is dominated by

Sitti atte en 01
11 112

Ef ang.mg aS1lEl Ii alIdE Eif
THEM T.EE it e



Saddle pointapproximation consider I dxen with

x a real function with a maximum at no a b
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Introducing the logarithmic equivalence to getrid ofprefactors

u b hav lab we rewrite or E as
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In the large N limit E IE is the only observed value

the systems adopt energies E a EI suchthat I Tm

This is thezeroth law of thermodynamics

Additivity of entropy
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