3.1.2) Discute system: two-livel system

In many systems, energy variations do not stem (solely) from motion in space, but instead du to changes in disaete observables. An important excuple is that of localized electrons on a lattia, in the pusance of a magnetir field. Taking into account the q-natio of the electrons (q2-2), their energy is:

E=-uh Z vi - 5 Z vivis where u is the magnetic monent of the electrons, T the exchange energy, and $T=\pm 1$ is (minus) their normalized spins.

Two-level systems: A simpler version of this problem amonts to reglecting in tractions and consider Nortons in a lattice that can each be in two possible energy levels, E:= 0 n E. Then H= \(\in \varepsilon_i = n\varepsilon_i n\var

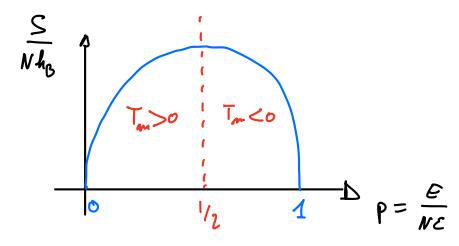
We note that the following configurations can be distinguished

$$\mathcal{S}(E=mE)=\binom{N}{m}=\frac{N!}{m!(N-m)!}$$

Let us write
$$n = pN$$
, one finds

$$S_{m} = -N h_{B} \left[\rho h_{p+} (1-\rho) h_{1}(1-p) \right]$$
 with $P = \frac{E}{N \epsilon}$

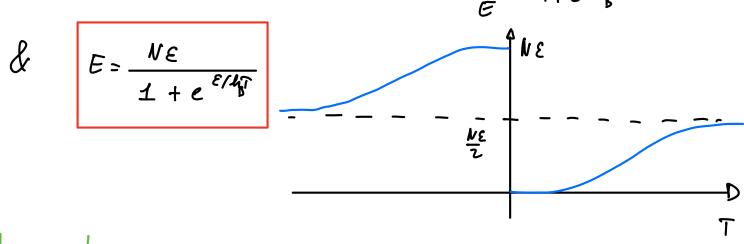
$$\left[\begin{array}{c} N \\ N \end{array}\right] \approx e^{-Nh_B} \left[\begin{array}{c} php + (1-p) h(1-p) \end{array}\right] \quad \text{is a useful formula}$$



 $\frac{S}{N}$ -50 as p-60 a 1 since there is only 1 Configuration with E=0, a.

Temperature: Sm is not always increasing with E = Tm can be $\frac{1}{T} = \frac{\partial S}{\partial \varepsilon} = \frac{\partial S}{\partial \rho} \cdot \frac{\partial P}{\partial \varepsilon} = \frac{\partial S}{\partial \varepsilon} \cdot \frac{\partial P}{\partial \rho} = \frac{2S}{2} \cdot \frac{1}{\rho} < 0 \quad \text{if } \rho > \frac{1}{2}$ negative.

In verting this relation had to
$$e^{\frac{E}{A_0T}} = \frac{1-p}{p} \Rightarrow p = \frac{1}{1+e^{\frac{E}{A_0T}}}$$



Heat capacity:
$$C_{V} = \frac{d\tilde{e}}{dT} = N h_{B} \frac{\tilde{E}^{2}}{(A_{B}T)^{2}} \frac{e^{E/h_{B}T}}{(1 + e^{E/h_{B}T})^{2}} \sim \frac{N h_{B} \tilde{E}^{2}}{(h_{B}T)^{2}} e^{-\frac{\tilde{E}}{h_{B}T}}$$

The exponential vanishing of Cr as T-ov is standard of gapped systems.

3-1-4) large systems and thermodynamics

3-1-4.1) Macio state

As in chapter 2, the microscopic configurations of a system, referred to as microstate &, often contain too much in fancition. One may thus introduce coarse grained des aiptions of the system by grouping microstates together into macrostates Qu.

Example 8 N spins, $l_m = (S_1, -, S_N)$ A macrostate l_m can be defined using the magnetization pur spin m= 1 = six Si : (m (m)= { lm such that m/(m)= mo} Then are 2 microstates and N+1 macrostates sinc Nom E [[-N, N]].

= Strong dineuriaral reduction, hence the micro vs macro denomination.

Probability: P(Pm) = Emen P(Pm) is the probability of the nacrostate.

Because ther are many ℓ_m in one ℓ_M , $P(\ell_m)$ is of true riples than $P(\ell_n)$.

This is a case where more is simples let us consider an important examples equilibration.

3.1.4.2) Subsystems & equilibration

Isolated system S divided

into S, & Sz, with N, Nz, U, Nz

fixed but E, & Ez fluctuating.

$$equation S = e_1 \otimes e_2$$

Microcanomical neasure
$$P_{E}(Q) = P(Q_{1}, Q_{2}) = \frac{1}{S(E)} \delta(E(Q) - E)$$

$$= \frac{1}{S} \delta(E_{1} + E_{2} - E)$$

SI,(E1): * of configurations P, of S, with energy E1.

 $\mathcal{A}_{2}(\mathcal{E}_{\ell}): \mathcal{E}_{1}.$

Q: In the large syster linit, what are the typical value of E, & Er?

S, S, & Sz assens very large such that Eight << E, E, Ez=EZ=E-E1.

$$\Rightarrow \mathcal{L}(E) = \sum_{E_{I}} \mathcal{L}_{I}(E_{I}) \mathcal{L}_{I}(E_{I} = E - E_{I})$$

Macrostate defined by E1: { (9, 42) such that E19, = E13

$$P(E_{i}) = \frac{\sum_{q_{i}, q_{i} | E_{i} \in E_{i}} \Delta}{\Omega(E_{i} + E_{i})} = \frac{\Delta(E_{i}) \Delta(E_{i})}{\Delta(E_{i})}$$

let's show that P(E1) is peaked at a given value E1.

In large systems, E, vais continuarly

$$S(\epsilon) = \int d\epsilon_1 S_1(\epsilon_1) S_2(\epsilon-\epsilon_1) = \int d\epsilon_1 e^{\frac{S_1(\epsilon_1)}{4g}} + \frac{S_2(\epsilon_2)}{4g}$$

$$S_{1} \propto N_{1} \equiv \alpha N$$

$$S_{1} \propto N_{2} \equiv (1-\alpha)N$$

$$S_{1} \propto N_{2} \equiv (1-\alpha)N$$

$$S_{1} \propto N_{2} \equiv (1-\alpha)N$$

$$S_{2} \propto N_{3} \equiv (1-\alpha)N$$

$$S_{3} \propto N_{4} \equiv (1-\alpha)N$$

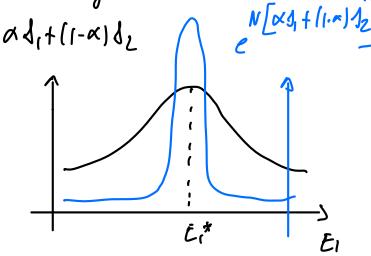
 $S_i = \frac{S_i}{N_i}$ the entropy per porticle

When N-000, the integral is dominated by

$$E_{i}^{*} = ang_{max} \left[\alpha \Delta_{1}(E_{i}) + (1-\alpha) \delta_{2}(E-E_{i}) \right]$$

incuases with E1

decuares with E



6

Saddle point approximation Consider
$$I = \int_{a}^{b} dx e^{N \phi(x)}$$
, with $\phi(x)$ a real function with a maximum at $x_0 \in (a,b)$

$$I = \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi'(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$= \int_{a}^{b} dx e^{N \left[\phi(x_{0}) + (x - x_{0}) \phi''(x_{0}) + \frac{1}{2} (x - x_{0})^{2} \phi''(x_{0}) + ... \right]}$$

$$I = \frac{N\phi(x_0)}{\sqrt{N}} \int_{-\infty}^{\infty} \frac{(b-x_0)-b+\infty}{\sqrt{N}} dx = \frac{u^2}{2} |\phi''(x_0)| + \sum_{N \geq 3} \frac{N}{N^4/2} \frac{u^4}{\lambda!} |\phi''(x_0)|$$

$$\sqrt{N}(a-x_0)-b-\infty$$

$$\frac{1}{N-000}\sqrt{\frac{2\pi}{N|\phi'(x_0)|}}e^{N\phi(x_0)}$$

Bach to SL(E)

Introducing the logarithmic equivalent to get mid of pufactors:

a2b = havlub, we rewrite & (E) as

$$SL(E) \approx \frac{N}{MB} \left[x_1 J_1(E_1^*) + (1-\alpha) J_2(E_1^*) \right] = e^{\frac{1}{MB} \left[S_1(E_1^*) + S_2(E_1^*) \right]}$$
where $E_1^* = aug_{Max} \left[S_1(E_1) + S_2(E_1^*) \right]$

$$C=$$
 $S'_{l}(E_{l}^{*}) - S'_{l}(E-E_{l}^{*}) = 0$

$$(=) \frac{\partial S_1}{\partial \varepsilon_1 | \varepsilon_1^*} = \frac{\partial S_2}{\partial \varepsilon_1 | \varepsilon_1^* = \varepsilon - \varepsilon_1^*} \iff T_m^1 (\varepsilon_1^*) = T_m^2 (\varepsilon_2^*)$$

Bach to P(E1)

$$P(E_l) = \frac{1}{S(e)} \left[S_r(e_l) + S_2 \left[E - E_l \right] \right] = \frac{1}{4B} \left[S_r(e_l) + S_2 \left(E - E_l \right) - S_r(E_l) - S_r(E_l) - S_r(E_l) \right]$$

If
$$E_i - E_i^* \sim O(E_i^*) dE_i \neq E_i^*$$
, the exposer is negative $dO(N)$

$$= \int_{0}^{N} P(E_i + E_i^*, E_i - E_i^* \sim O(N)) \propto e \qquad -50$$

$$= \int_{N-0}^{\infty} P(E_i + E_i^*, E_i - E_i^* \sim O(N)) \propto e \qquad N-0$$

In the large N linit, $E, \Sigma E^*$ is the only observed value =5 the systems adopt energies $E^* A E^* Such that <math>T_m = T_m^2$

= This is the zeroth law of thermodynamics

Additivity of entropy

 $S(E) = h_B \ln SL(E) = h_B \ln SL(E_i^*) + h_B \ln SL(E_i^*) = S(E_i^*) + SL(E_i^*)$